SELECTIVE SUN-DRIVEN OXIDATION OF CELLULOSIC BIOMASS DERIVATIVES FOR THE SYNTHESIS OF ADDED VALUE CHEMICALS

Silvia Grandi^a, Irene Carrai^b, Giacomo Morselli^c, Raffaello Mazzaro^b, Luca Pasquini^b, Paola Ceroni^c, Stefano Caramori^a ^aDepartment of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy, <u>grnslv@unife.it</u> ^bDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy ^cDepartment of Chemistry, University of Bologna, Bologna, Italy

^cDepartment of Chemistry, University of Bologna, Bologna, Italy

Solar energy and photoelectrosynthetic cells

Sun-driven oxidative chemistry aimed at the preparation of high-value chemicals of industrial or pharmaceutical interest is one of the most interesting applications of photoelectrosynthetic cells.

Semiconductor-based devices can be exploited to promote different redox processes, and, among them

- ✓ Band gap of 2.1 eV, which allows for visiblelight absorption
- ✓ Stability in aqueous basic environment
- \checkmark Made of non-toxic, earth-abundant elements
- x Slow hole-transfer dynamics
- x Charge recombination phenomenon

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101006839

Hematite and oxidation reactions

transformations of organic molecules for the synthesis of high-value products under less drastic conditions than traditional organic synthesis methods.

Cathode α -Fe₂O₃

3-

Hematite photoelectrodes are able to oxidize biomass and have been used by us in HMF photo-electro oxidation into FDCA driven by Cobalt phosphate-modified Ti:Fe₂O₃ photoanodes.

Hematite photoanodes: synthesis and performances

Synthesis

Deng *et al.* hydrothermal synthesis to produce nanostructured thin films of hematite

- Variation of time, temperature and
- pressure
- Additives in the autoclave solution
- Seedlayers/underlayers

2nd step :Hydrothermalsynthesis of FeOOH

Can affect **thickness** and **morphological growth** of hematite film

SEM image of hematite film

CoPi electrodeposition and photoelectrochemical performances

EIS study and equivalent circuit

CoPi is a Cobalt (III) oxide catalyst with coordinated phosphate, known as a catalyst for water oxidation

- Increased photocurrent at intermediate potentials in the presence of CoPi (red curve)
- Significant shift of photocurrent onset and decrease of cathodic spikes in the presence of TEMPO (blue curve)

Evaluation of charge transfer dynamics trough EIS

Ti:Fe₂O₃/CoPi photoanodes for biomass oxidation

3rd step :

annealing

TiCl₄ doping and final

0.1 0.2 0.3 0.4 0.5 0.6 0.7 V vs SCE

When hematite electrodes are modified with CoPi, photogenerated holes accumulates preferentially on CoPi surface rather than on hematite superficial states (Ccat > Css).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 V vs SCE

Adding TEMPO to the electrolyte mixture, that's a redox mediator who starts the reaction, the ability of the catalyst to accumulate charges decreases, $\int A(Ccat, TEMPO) < \int A(Ccat)$.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 V vs SCE

In the presence of TEMPO charge transfer processes become faster, demonstrating that, compared with water oxidation, CoPi is selective toward TEMPO-mediated oxidation of biomass.

Results and conclusions

Electrode	Time of the exp (h)	Total charge passed (C)	HMF consumed (%)	Conv HMF exp in DFF (%)	Conv HMF exp in FFCA (%)	Conv HMF exp in FDCA (%)	Faradaic efficiency for FDCA (FE%)
Hema+CoPi	18	117	100	0	31	73	54
Hematite	19	83	100	0	57	43	43

- The table highlights the effect of CoPi on hematite electrodes: it compares conversion rate and faradic efficiency for FDCA in the absence (second row) and in the presence of CoPi on hematite surface (first row).
- Because of the competition with OER, a full conversion of HMF to FDCA is not completely achieved. However, the presence of CoPi on the hematite surface enhances the selectivity towards FDCA, increasing the reaction yield from 43 % to **73** % of conversion into the target product.
- The reaction it's been conducted in basic aqueous conditions at room temperature, under sunlight illumination with the application of a low bias, milder and environmentally friendly conditions with respect to the traditional industrial production processes of FDCA.